## Sheet 1

Q1:- Let $X=\{1,2,3\}$. Let a function $d: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ be as below. Decide whether $d$ is a metric on $X$. You must justify your answers.
(i) $\quad d(1,1)=d(2,2)=d(3,3)=0$,

$$
\begin{aligned}
& d(1,2)=d(2,1)=2 \\
& d(2,3)=d(3,2)=4 \\
& d(1,3)=d(3,1)=5
\end{aligned}
$$

(ii) $\quad d(1,1)=d(2,2)=d(3,3)=0$,
$d(1,2)=d(2,1)=2$,
$d(2,3)=d(3,2)=4$,
$d(1,3)=d(3,1)=7$.
Q2:- Let $x=(1,5,-3)$ and $y=(3,8,-9)$ are two vectors in $\mathbb{R}^{3}$. Find (a) $d_{1}(x, y)$, (b) $d_{2}(x, y)$, (c) $d_{\infty}(x, y)$, where $d_{1}, d_{2}, d_{\infty}$ are metrics on $\mathbb{R}^{3}$.

Q3:- Consider the metric space $\left(C([a, b]), d_{\infty}\right)$.
A. Let $f(x)=x^{2}$ and $g(x)=x^{3}$. Find

$$
\text { (i) } d_{\infty}(f, g) \text { in } C([0,1]) \text {. (ii). } d_{\infty}(f, g) \text { in } C([-1,1]) \text {. }
$$

B. Let $f(x)=x^{2}$ and $g(x)=x^{4}$. Find
(i) $d_{\infty}(f, g)$ in $\mathrm{C}([0,1]) . \quad$ (ii) $d_{\infty}(f, g)$ in $C([0,2])$

Q4:- Prove that $\left(\mathbb{R}^{N},\|\cdot\|_{2}\right)$ is a normed space, where $\|\cdot\|_{2}$ is the Euclidean norm on $\mathbb{R}^{N}$. Q5:- In $\mathbb{R}^{N}$ we define

1. $d_{1}(x, y)=\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|$,
2. $d_{2}(x, y)=\left(\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}$,
3. $d_{\infty}(x, y)=\max _{1 \leq i \leq N}\left\{\left|x_{i}-y_{i}\right|\right\}$.

Prove that $d_{1}, d_{2}$ and $d_{\infty}$ are metrics on $\mathbb{R}^{N}$.
Q6:- Let d be a metric on X. Determine all constants K such that
(1)_kd is a metric on X . (2) $\mathrm{d}+\mathrm{k}$ is a metric on X

Q7:- Inverse triangle inequality. Let $(X,\|\cdot\|)$ be a normed space. Prove that

$$
\|x-y\| \geq \mid\|x\|-\|y\| \| \quad \forall x, y \in X
$$

