Advanced Mathematical Analysis

Sheet 1

- Q1:- Let $X = \{1,2,3\}$. Let a function $d : X \times X \rightarrow [0,\infty)$ be as below. Decide whether d is a metric on X. You must justify your answers.
 - (i) d(1,1)=d(2,2)=d(3,3)=0, d(1,2) = d(2,1)=2, d(2,3)=d(3,2)=4,d(1,3)=d(3,1) = 5.
 - (ii) d(1,1)=d(2,2)=d(3,3)=0, d(1,2) = d(2,1)=2, d(2,3)=d(3,2)=4,d(1,3)=d(3,1) = 7.
- Q2:- Let x = (1,5,-3) and y = (3,8,-9) are two vectors in \mathbb{R}^3 . Find (a) $d_1(x,y)$, (b) $d_2(x,y)$, (c) $d_{\infty}(x,y)$, where d_1 , d_2 , d_{∞} are metrics on \mathbb{R}^3 .
- Q3:- Consider the metric space ($C([a, b]), d_{\infty}$).
 - A. Let $f(x) = x^2$ and $g(x) = x^3$. Find (i) $d_{\infty}(f,g)$ in C([0,1]). (ii). $d_{\infty}(f,g)$ in C([-1,1]).
 - **B.** Let $f(x) = x^2$ and $g(x) = x^4$. Find

(i)
$$d_{\infty}(f,g)$$
 in C([0,1]). (ii) $d_{\infty}(f,g)$ in C([0,2])

Q4:- Prove that $(\mathbb{R}^N, \|\cdot\|_2)$ is a normed space, where $\|\cdot\|_2$ is the Euclidean norm on \mathbb{R}^N . Q5:- In \mathbb{R}^N we define

1.
$$d_1(x, y) = \sum_{i=1}^{N} |x_i - y_i|,$$

2. $d_2(x, y) = \left(\sum_{i=1}^{N} |x_i - y_i|^2\right)^{\frac{1}{2}},$
3. $d_{\infty}(x, y) = \max_{\substack{1 \le i \le N}} \{|x_i - y_i|\}.$
Prove that d_1, d_2 and d_{∞} are metrics on \mathbb{R}^N

Q6:- Let d be a metric on X. Determine all constants K such that (1)_kd is a metric on X. (2) d + k is a metric on X

Q7:- Inverse triangle inequality. Let $(X, \|\cdot\|)$ be a normed space. Prove that

 $||x - y|| \ge |||x|| - ||y||| \quad \forall x, y \in X.$ Page **1** of **1**